In-cell SHAPE uncovers dynamic interactions between the untranslated regions of the foot-and-mouth disease virus RNA

نویسندگان

  • Rosa Diaz-Toledano
  • Gloria Lozano
  • Encarnacion Martinez-Salas
چکیده

The genome of RNA viruses folds into 3D structures that include long-range RNA–RNA interactions relevant to control critical steps of the viral cycle. In particular, initiation of translation driven by the IRES element of foot-and-mouth disease virus is stimulated by the 3΄UTR. Here we sought to investigate the RNA local flexibility of the IRES element and the 3΄UTR in living cells. The SHAPE reactivity observed in vivo showed statistically significant differences compared to the free RNA, revealing protected or exposed positions within the IRES and the 3΄UTR. Importantly, the IRES local flexibility was modified in the presence of the 3΄UTR, showing significant protections at residues upstream from the functional start codon. Conversely, presence of the IRES element in cis altered the 3΄UTR local flexibility leading to an overall enhanced reactivity. Unlike the reactivity changes observed in the IRES element, the SHAPE differences of the 3΄UTR were large but not statistically significant, suggesting multiple dynamic RNA interactions. These results were supported by covariation analysis, which predicted IRES-3΄UTR conserved helices in agreement with the protections observed by SHAPE probing. Mutational analysis suggested that disruption of one of these interactions could be compensated by alternative base pairings, providing direct evidences for dynamic long-range interactions between these distant elements of the viral genome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of Foot and Mouth Virus Subtype O2016 Genetic Alterations During Successive Passages in BHK Monolayer

Abstract : Foot and Mouth Disease is one of  the important live stocks contagious viral disease caused by Aphtovirus genus ,  that is belong to family RNA virus  picornaviride. The important characteristic of FMD virus is high mutation that give rise to diversity of Antigen in surface of Neutralizing proteins. For this reason FMD virus have 7 distinct serotype and many subtype. Vaccination is o...

متن کامل

Rapid and accurate diagnosis of Foot-and-mouth disease virus by Real-time PCR in field samples

During 2010-2011, Real-time PCR procedure was used to detecting FMDV RNA on 147 epithelium samples from the field. In this survey, for Real-time PCR from 3D gene segment as conserve region selected for tracking all of seven serotypes FMDV. The assay detected the viral RNA in all serotypes of FMDV. The rRT-PCR specifically detected FMD virus in sample with greater sensitivity than our convention...

متن کامل

Diagnosis of Foot-and-Mouth Disease Virus by Real Time Reverse Transcription Polymerase Chain Reaction Assay in Iran

Background and Aims: Accurate and rapid diagnosis is necessary for effective control and prevention of foot-and-mouth disease (FMD). In present study, was evaluated real time reverse transcription-polymerase chain reaction (rRT-PCR) assay along with diagnostic routine methods for the detection of all seven serotypes of FMD virus (FMDV), namely O, C, A, SAT1, 2, 3 and Asia 1 in biological sample...

متن کامل

Developing Vaccines against Foot-and-Mouth Disease: a Biotechnological Approach

Foot-and-mouth disease (FMD) is a contagious viral disease of livestock with significant economic effect. It is prevalent in various regions of Asia, Africa, and South America. The causative agent of this disease is called foot-and-mouth disease virus (FMDV), which is a member of Aphthovirus genus. Vaccination is an effective technique to prevent the complications of FMD and to eradicate the di...

متن کامل

The internal ribosome entry site (IRES) of hepatitis C virus visualized by electron microscopy.

Translation of hepatitis C virus (HCV) RNA is initiated via the internal ribosome entry site (IRES), located within the 5' untranslated region. Although the secondary structure of this element has been predicted, little information on the tertiary structure is available. Here we report the first structural characterization of the HCV IRES using electron microscopy. In vitro transcribed RNA appe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2016